Definitions of Life Table Functions

The following are definitions of the standard actuarial life table functions. The life table represents a hypothetical cohort of 100,000 persons born at the same instant who experience the rate of mortality represented by q_x , the probability that a person age x will die within one year, for each age x throughout their lives. We assume a uniform distribution of deaths for ages greater than 0. For age 0, we use a separation factor, f_0 , which represents the average number of years not lived by those age 0 who die at age 0.

Symbol	Definition
$\mathbf{q}_{\mathbf{x}}$	The probability that a person exact age x will die within one year.
lx	The number of persons surviving to exact age x.
dx	The number of deaths between exact ages x and x+1.
L _x	The number of person-years lived between exact ages x and x+1.
Tx	The number of person-years lived after exact age x.
\mathring{e}_x	The average number of years of life remaining at exact age x.

The life table functions l_x , d_x , L_x , T_x , and \mathring{e}_x are calculated as follows:

Equation	Range of x (if applicable)
$l_0 = 100,000$	
$l_x = l_{x-1} \cdot (1 - q_{x-1})$	x = 1, 2, 3,
$\mathbf{d}_{\mathbf{x}} = \mathbf{l}_{\mathbf{x}} \cdot \mathbf{q}_{\mathbf{x}}$	$x = 0, 1, 2, 3, \dots$
$\mathbf{L}_0 = \mathbf{l}_0 \cdot \mathbf{f}_0 \cdot \mathbf{d}_0$	
$L_x = l_x5 \cdot d_x$	x = 1, 2, 3,
$T_x = L_x + L_{x+1} + L_{x+2} + \dots$	$x = 0, 1, 2, 3, \dots$
$\dot{e}_{\chi} = T_x / l_x$	$x = 0, 1, 2, 3, \dots$

The following are definitions of additional symbols that are either in the tables or are used to calculate values in the tables:

Symbol	Definition
i	The assumed annual rate of interest.
v	The present value of a payment of \$1 due in 1 year. (The present value of a payment of \$1 due in n years is v^n .)
A _x	The present value at age x of a payment of \$1 payable at the end of the year of death.
ä _x	The present value at age x of a life annuity of \$1 per year, due at the beginning of each year.
$12\ddot{a}_{x}^{(12)}$	The present value at age x of a life annuity of \$1 per month, due at the beginning of each month.

The following is a list of calculated functions, including commutation functions:

Equation	Notes
v = 1 / (1 + i)	Not in life table; just used for calculations.
$D_x = v^x \cdot l_x$	
$C_x = v^{x+1} \cdot d_x$	Not in life table; just used for calculations.
$M_{x} = C_{x} + C_{x+1} + C_{x+2} + \dots$	
$A_x = M_x / D_x$	
$N_x = D_x + D_{x+1} + D_{x+2} + \dots$	
$\ddot{a}_x = N_x / D_x$	
$12\ddot{a}_{x}^{(12)} \approx 12 \cdot (\ddot{a}_{x} - 11/24)$	11/24 is a standard approximation used when converting an annuity due from an annual to a monthly payment frequency.